DATA SCIENCE IN THE REAL WORLD

Being a Data Scientist does not make
you a Software Engineer!

How to build scalable Machine Learning systems — Part 1/2

Semi Koen

Mar 2 - 11 min read %

AL T YHT) (1T
Y
. sub-indicat
- or - -
Nt sCart-menuy -Cart—'iCO\E\ w:'/’
- 4 % e
——— o&;ter.transparent header#t—e: e
—— pa .sf—menu > li.current page_;;%’
-ST-menu > 1i.current- \ =S
. . o —Menu—zmmrss
‘-‘lsw>ul>l1>a:hover> 33 =
. + ST
essss== == ul #search-btn a:hover span,se——
——— — i .
= .sf-menu > Li.current-menu—=e = _—
. _ .
'ﬂlgalt?r -1con salwent-cart,.asz:em:m_—n- —
| ‘,e':-l.1mportant;color:#ffffffh‘mpmx_ I~ —

® spa

-

—
- —

BEING A

DATA SCIENTIST

DOES NOT MAKE YOU A

SOFTWARE ENGINEER

HOW TO BUILD SCALABLE MACHINE LEARNING SYSTEMS

Disclaimer

Hopefully I caught your attention with the controversial title. Great! Now bear with me
as I am going to show you how you can build a scalable architecture to surround your

witty Data Science solution!

I am starting a series of 2 articles that will cover the basics of software engineering with

regards to architecture and design and how to apply these on each step of the Machine

Learning Pipeline:

Part 1: Problem Statement | Architectural Styles | Design Patterns | SOLID
Part 2: Architecting a Machine Learning Pipeline

Introduction

As we have seen before in the famous Venn diagram of Steven Geringer, Data Science is
the intersection of 3 disciplines: Computer Science, Mathematics/Statistics and a
particular Domain knowledge.

Computer Science

Data Science Venn Diagram [Copyright Steven Geringer]

Having basic (or even advanced) programming skills is key to put your end to end
experiment together, however it does not mean that you have created an application
that is production ready. Unless you have come into Data Science and Machine Learning
(ML) from an IT background and have tangible experience into building enterprise,
distributed, solid systems, your Jupyter notebook does not qualify as a great piece of

software and sadly does not make you a Software Engineer!

What you have built is a great prototype of a predictive product, but you still have to
push it through the engineering roadmap. What you need is a team of professional
Software Engineers by your side to take your (disposable) proof of concept and turn it

into a performant, reliable, loosely coupled and scalable system!

Everything is designed; few things are designed
well!

In this series we will see some ideas of how this can be achieved... We will start with the
basics in Part 1, and gradually design the holistic architecture in Part 2. The suggested
architecture will be technology agnostic. The ML pipeline will be broken down into
layers with clear demarcation of responsibilities, and at each layer, we can choose from a

number of technology stacks.

But let’s start by defining how a successful solution looks like!

Problem Statement

The main objectives are to build a system that:

» Reduces latency;

» Isintegrated but loosely coupled with the other parts of the system, e.g. data stores,
reporting, graphical user interface;

» Can scale both horizontally and vertically;

» Is message driven i.e. the system communicates via asynchronous, non-blocking
message passing;

» Provides efficient computation with regards to workload management;

» Is fault-tolerant and self healing i.e. breakdown management;

» Supports batch and real-time processing.

Architectural Styles

We will first introduce what a reactive system is and will proceed to a quick tour of the

most prevalent architectural patterns.

Reactive Systems

The reactive systems design paradigm is a coherent approach to building better systems,
which are designed according to the tenets of the Reactive Manifesto. Each reactive
principle maps to an important system dimension of scalability:

* Responsive — Time

e FElastic —» Load
 Resilient — Error

* Message Driven — Communication.

Message Driven Elastic
The system relies on The system stays responsive
asynchronous message under varying workload
passing

Features of Reactive Systems

Service Oriented Architecture (SOA)

SOA centres around the concept of decomposing business problems into services. The
services share information via the network and they also share code (i.e. common
components) to maintain consistency and reduce development effort.

The service provider publishes a contract that specifies the nature of the service and
how to use it. The service consumer can locate the service metadata in the registry and

develop the required client components to bind to it and use it.

An orchestrator is a composite service which is responsible for invoking and combining
other services. Alternatively, choreography employs a decentralised approach for

service composition, i.e. services interact with the exchange of messages/events.

Service Consumer

[a]

(Bl

Orchestration

Choreography

Semi Koen

SOA

Streaming Architecture

A streaming architecture comprises of the following components:

e Producers: Applications that generate and send messages
e Consumers: Applications that subscribe to and consume messages

o Topics: Streams of records belonging to a particular category and stored as a
sequence of ordered and immutable records partitioned and replicated across a

distributed cluster

e Stream Processors: Applications that process messages in a certain manner (e.g.
data transformations, ML models, etc).

Consumer Applications

Producer Applications @

&
©

Semi Koen

Streaming Architecture

Lambda Architecture

The Lambda (A) Architecture is designed to handle both real-time and historically
aggregated batched data in an integrated fashion. It separates the duties of real-time
and batch processing while query layers present a unified view of all of the data.

The concept is simple: When data is generated, it is processed before stored, so analysis
can include data generated in the last second, the last minute, or the last hour by only
processing the incoming data — not all the data.

Incremental In Memory
Data Store

Lambda Architecture

Microservice Architecture

Microservices, is an architectural style that structures an application as a collection of
small, autonomous, loosely coupled and collaborating services, modelled around a
business domain. The services communicate using either synchronous protocols such as
HTTP/REST or asynchronous protocols such as AMQP. They can be developed and
deployed independently of one another. Each service has its own database in order to

be decoupled from other services.

s
-

Seml Koen

Microservices Architecture

Representational State Transfer (REST) Architecture

REST is an architectural style for developing web services and it builds upon existing
features of the internet’s HTTP. It allows transferring, accessing and manipulating textual
data representations, in a stateless manner i.e. applications can communicate

agnostically.

A RESTful API service is exposed through a Uniform Resource Locator (URL), which
provides the capability of data being created, requested, updated, or deleted (CRUD). It

is best used to manage systems by decoupling the information that is produced and

consumed from the technologies that produce and consume it!

REST Architecture

Design Patterns

We will only scratch the surface on this topic and will only discuss those patterns that I
may be referring to in the 2nd Part of the series. — [Hard to know just yet, but these are
the patterns I use on a daily basis]

A software design pattern is an optimised, repeatable solution to a commonly occurring
problem in software engineering. It is a template for solving a problem that can be used in

many different situations.

Strategy

The Strategy pattern defines a family of algorithms, put each one in a separate class and
make them interchangeable. Encapsulating the behaviour in separate classes, eliminates
any conditional statements and the correct algorithm (i.e. strategy) is chosen at run-

time.

— Indication for usage: There are different implementations of a business rule or

different variants of an algorithm are needed.

The Strategy Interface declares the algorithm
signature.

Strategy Interface

The Context maintains a reference to one of
the concrete strategies and communicates with
this object only via the strategy interface.

It doesn't know what type of strategy it works
with or how the algorithm is executed.

Context

Algorithm(data)

Concrete Strategy A

Concrete Strategy B
Algorithm(data)

Algorithm(data)

The concrete strategies implement different
variations of the algorithm.

Strategy Pattern

Template Method

Request(strategy)

-« Client

The Client creates a specific strategy object
and passes it to the context.

The Template Method intends to abstract out a common process from different

procedures. It defines the skeleton of an algorithm, deferring some steps to sub-classes.

The sub-classes can override some behaviour but cannot change the skeleton.

— Indication for usage: There is a consistent set of steps to follow but individual steps

may have different implementations.

v¢ Difference to Strategy Pattern:

» Template: Algorithm is selected at compile-time by sub-classing.

e Strategy: Algorithm is selected at run-time by containment.

The abstract class declares the steps of an
algorithm, as well as the actual template

Abstract Class

method which calls these steps in a specific Template()
order. The steps may either be declared Stepl()
abstract or virtual (have some default step2()

implementation).

1

Concrete Class A Concrete Class B
Stepl() Stepl()
Step2() Step2()

The concrete classes can override all of the
steps, but not the template method itself.

Template Method

Chain of responsibility

The Chain of Responsibility pattern suggests avoiding coupling the client (sender of
requests) with the receiver, by enabling one or more handlers to cater for the requests.
These handlers are linked into a chain i.e. each handler has a reference to the next

handler in the chain.
- Chain of Responsibility -~

Sender e Handler I— Handler Y Handler ——;——h Receiver

— Indication for usage: More than one objects may handle a request, and the handler

(nor the sequence) isn’t known a priori.

Handler Interface
The Handler declares the interface for handling Handle(request) < Client
a request and setting the next handler. SetNext(handler)

The client composes chains depending on the
application’s business logic.

The base handler implement the default Base Handler
handling behavior. It is optional, but good Handle(request)
practice. SetNext(handler)

Concrete Handler A Concrete Handler B
Handle(request) Handle(request)

When the concrete handlers receive a request
they decide whether to process it and pass it
along the chain.

Chain of Responsibility

Observer

The Observer pattern (aka Publish/Subscribe or PubSub for short) enables easy

broadcast of communication by defining a one-to-many dependency between objects,

so that when one object undergoes a change in state, all its dependents are notified and

updated automatically. It is the observers responsibility to register the event they are

‘observing’.

— Indication for usage: When a change to one object requires changing others, and

you don’t know how many objects need to be changed.

The subscriber interface declares update
method signature.

Subscriber Interface

The publisher issues events when its state
changes. It also contains a subscription
infrastructure that lets new subscribers attach
and detach.

Publisher
Attach()

Update(data)

Concrete Subscriber A Concrete Subscriber B
Update(data) Update(data)

The concrete Subscribers perform some
actions in response to notifications (plus
contextual data) issued by the publisher.

Observer Pattern

Detach()
Notify(data)

« Client

The Client creates the publisher and
subscribers and then registers subscribers for
publisher updates.

Builder
The Builder pattern is intended to construct a complex object in a step-by-step fashion
and also separate the construction from its representation. In essence, it allows to

produce different types and representations of an object using the same code.

— Indication for usage: Several kinds of complex objects can be built with the same

overall build process, albeit the variation in the individual construction steps.

The Director defines the sequence in which to

The builder interface declares the signatures of
call construction steps.

the product construction steps.

Builder Interface

BuildStepl() Director
Buildstep2() Construct()
BuildStepN()
F 3
The concrete builders provide different T
implementations of the construction steps.
Concrete Builder A Concrete Builder B
Buildstepl() Buildstepl()
BuildStep2() Buildstep2() -—— Client
BuildstepN() BuildstepN()
ProductA ProductB
¥ ¥
Product A Product B

The client associates one of the builder objects
with the director, via parameters of the
director’s constructor.

Products are resulting objects. They don't have
to belong to the same class hierarchy or
implement the same interface.

Builder Pattern

Factory Method

The Factory Method defines an interface for creating objects, but the instantiation is

done by sub-classes.

— Indication for usage: The exact types and dependencies of the objects are not known

beforehand.

The creator class declares the factory method.
The signature returns an abstract product.
Also the method itself can be abstract to force
all sub-classes to implement their own
Versions.

Creator

FactoryMethod()
The concrete creators override the base
factory method so they return different
product types. s
Concrete Creator A Concrete Creator B
FactoryMethod() FactoryMethod()
! !
v ¥
Product A Product B
Products are resulting objects. They implement
the same interface. R Abstract Product —

Factory Method

Abstract Factory

The Abstract Factory captures how to create families of related objects without
specifying their concrete classes.

— Indication for usage: Different cases exist that require different implementations of
sets of rules, that either unknown beforehand or extensibility is a concern.
s'¢ Difference to Abstract Method:

* Abstract Factory: Creates other factories, and these factories in turn create objects
derived from base classes.

* Factory Method: Creates objects that derive from a particular base class.

The Abstract Factory interface defines a set of
methods for creating abstract products, which
are related.

Abstract Factory

Interface
CreateProductX()
The concrete factories correspond to specific CreateProductY()
variant of _produc_ts. The client can work with any concrete
N.B: Although they instantiate concrete factory/product variant, as long as it
products, their signatures return T communicates with their objects via abstract
abstract products, so the client is not coupled interfaces.

to the specific variant of the product.

Concrete Factory A Concrete Factory B

CreateProductx() CreateProductx() - Client
CreateProductY() CreateProductY()
) |
v v
Product X_A = Abstract Product X = Product X_B
Product Y_A » Abstract Product ¥ =« Product Y_B

Products are resulting objects. They implement
the same interface.

Abstract Factory

Decorator

The Decorator pattern attaches new responsibilities to an object dynamically, by placing
it inside a special wrapper class that contains these behaviours, so there is no impact to

the signature of the original methods (composition over inheritance).

— Indication for usage: Assigning extra behaviours to objects at run-time without

breaking the code that uses these objects.

The client can wrap compenents in multiple
layers of decorators, as long as it works with Client
all objects via the component interface.

Abstract Component

The abstract component declares the common s :
interface for both wrappers and wrapped R
objects
T The abstract decorator references the wrapped
object and delegates all operations to it.
Abstract Decorator
Con_l:r_ete Cn.pn_nent 1 Concrete Component 2 WrappedComponent
originalBehaviour() OriginalBehaviour () AdditionalBehaviour()

|

The concrete compenents define the basic
behaviour, which can be altered by decorators.

Concrete Decorator A Concrete Decorator B
AdditionalBehaviour() AdditionalBehaviour()
AndsomeMore () NewSstate()

The concrete decorators define extra
behaviours.

Decorator Pattern

Repository

The Repository pattern addresses code centralisation for data retrieval and persistence
and provides an abstraction for data access operations i.e. acts like an in-memory
collection of domain objects to allow for CRUD methods to be performed, and removes

any database concerns.

— Indication for usage: Decoupling the business logic with data access code.

The Repository Interface contains all generic
operations like Add or Remove.

Repository Interface «——

The Abstract Repository and the specific
Specific Interface implement the Abstract Repository R it Interf
Repository interface. I

“———— Concrete Repository ————

The Concrete Repository implements the
specific repository interface and also derives
from the abstract repository.

Repository Pattern

Little bonus

Want to learn more about patterns? Start with the de-facto book of the ‘Gang of Four’,
namely: ‘Design patterns: elements of reusable object-oriented software’. The following

diagram with the patterns’ relationships is noteworthy — pretty spiffy, eh?

p—— Memento Proxy
saving stafe
Builder ofteraton \ =
i \ erator it Bridge
composites \
aramerating
acding composed
/ gmmm; using Command
5 e —
Decorator sharing ; ﬁarr'n.iing- ST
dafining
operations travoj'saﬂ the chain
Fweight | 205l visior
changing skin)‘
VBISUS GUIS
adding
J ﬁgf”g. Interpreter |——— cperalions Chain of Responsibility
(/ Iﬂm‘h-'mf
Strategy sharing symbaols T———
stales | Mediator —
L \ m —— Observer

State

dutining
algorithm's

SI'GN"-H____________
Template Method —————— oftan uses

Prototype |-._ \'
e et Factory Method

configure factory
mamk{m'.'r implemeant using

1 Abstract Factory

e o iR
/ sigl - Bl
L
Singleton /

Figure 1.1: Design pattern relationships

Courtesy: Design Patterns: Elements of Reusable Object-Oriented Software

SOLID

We will only toy with the SOLID principles here, as they are essential for every software

developer to know.

As Uncle Bob says: “They are not laws. They are not perfect truths. The are statements on

the order of: An apple a day keeps the doctor away”.

What this means is that they are not some kind of ‘magic’ that lead to the Promised Land
of milk, honey and great software, but nevertheless they are crucial contributors to

robust and long lasting software.

In a nutshell, these principles revolve around two major concepts, which are the building
blocks for successful enterprise applications: coupling is the degree to which one class
knows about and interacts with another class and cohesion indicates the degree to

which a class has a single purpose. In other words:

* Coupling is all about how classes interact with each other, and

* Cohesion focuses on how a single class is designed.

Single Responsibility Principle
A class should have one, and only one, reason to change.

This is self explanatory, but easier said than done — it is always tempting to add new
behaviours into existing classes, but that’s a recipe for disaster: each behaviour could be
a reason to change in the future, so less behaviours result in less opportunities to

introduce bugs during changes.

Open-Closed Principle
You should be able to extend a class’ behaviour, without modifying it.

The classes you use should be open for extension but closed for modification. One way
to achieve this is via inheritance i.e. create a sub-class so the original class is closed for
modification, but custom code is added to the sub-class to introduce a new behaviour.

Liskov Substitution Principle
Derived classes must be substitutable for their base classes.

When extending the behaviour of a class A into a sub-class B you must ensure that you
can still exchange A with B without breaking anything. This can be a bit catchy especially
when combining this principle with the Open-Closed one.

Interface Segregation Principle
Make fine grained interfaces that are client specific.

Interfaces and classes must be as specialised as possible, so calling clients do not depend
on methods they don’t use. This goes hand in hand with the Single Responsibility

principle.
Dependency Inversion Principle
Depend on abstractions, not on concretions.

High level classes should not depend on low level ones. They should both depend on
abstractions. Likewise, abstractions should not depend on details. Details should depend

on abstractions.

Little Bonus

I have created this quick reference diagram. If you wonder where my inspiration for the
little symbols on the left has come from, please take a look at: “The SOLID Principles,
Explained with Motivational Posters” article — I love how the author has added a fun

twist on the principles 7.

SINGLE RESPONSIBILITY

A class should have one, and only one,
reason to change

oPen CLOSE

You should be able to extend a class’
behaviour, without modifying it

LISKOV SUBSTITUTION

Derived classes must be substitutable for
their base classes

INTEMFACE SEGIEGATION

client specific

DEPENDENCY INVErSION

Depend on abstractions, not on concretions

SOLID

Footnote

This is not an exhaustive list of all the software engineering concepts but it is the basis of
what we are going to use in the next article. I hope it gives you a good flavour of the
contributing factors to building scalable software. Making the application design
resilient to changes is key to building a successful solution — when the design process is

rushed there is a fine to pay at the end of the project when errors are uncovered.

Good design is obvious. Great design is transparent.

Thanks for reading! Part 2 is coming soon...

I regularly write about Technology & Data on Medium — if you would like to read my

future posts then please ‘Follow’ me!

Data Science Machine Learning Programming Technology Women In Tech

